

Advanced Interpretation of Instrumented Micropile Load Tests

International Workshop on Micropiles, Toronto September 28, 2007

Terence P. Holman, Ph.D., P.E. Senior Engineer-Geotec, MORETRENCH

> Thomas J. Tuozzolo, P.E. Vice President, MORETRENCH

Introduction

- Two case histories of strain gauge instrumented micropile load tests
 - Case History No. 1 167 Johnson Street
 - Case History No. 2 Dublin Road Pump Station (DRPS)
 - All piles Type B pressure grouted with typically developed pressures of 345 kPa
- Highlight aspects of pile mechanics
 - Degradation of secant pile modulus
 - Nonuniform load distribution
 - Generation of micropile tip resistance and shaft resistance

Case History No. 1-167 Johnson St

- 40+ story residential high rise on mixed mat/spread footing foundations
- Dense to v. dense sand and sand/gravel deposits
- Excessive δ_v beneath heavily loaded elevator core
- Minimize δ_v→incorporate micropiles to create "piled raft" effect
 - Allow high δ and low F.S.
- 2 strain gauge instrumented load tests
 - 14 gauges per pile

Ground Conditions and Pile Design

Instrumentation

- Spot-weldable gauges on bar (10 ea.)
 - Accuracy=15 $\mu\epsilon$, Sensitivity=0.4 $\mu\epsilon$
- Embedment gauges in grout (4 ea.)
 - Accuracy=15 με, Resolution=1.0 με
- Grout strength and unconfined modulus testing
 - E=13.5 to 14.5 GPa (Unconfined secant at ε =0.11%)
 - $f_c^{*}=44.8$ MPa (cylinders) to 62.1 MPa (cubes)

Test Pile Installation

Left - Installation of 273 mm test element (pile) Top – Installation of 194 mm diameter reaction anchor, 1334 kN capacity

Test Pile Construction

Left - Installation of 273 mm test element (pile) Top – Buried old foundation wall and obstructions

Load Testing Data

Case History No. 2-DRPS

- Ground loss, heave, and settlement around 3 pump station structures following excavation and pile driving
- Complex ground conditions
 - Excess head/high groundwater levels
 - Marine glauconitic silty fine sand deposits

Ground Conditions and Pile Design

Load Testing Data

Analysis and Interpretation

- Nonlinear $\sigma{-}\epsilon$ behavior of composite pile section
- Calculated load distribution along bond length
- Deformation-based generation of micropile tip resistance and bond resistance

Composite Micropile Behavior

- Interpretation of load distribution
 - $P = \epsilon A_p E_p$
- Composite pile has complex $\sigma-\epsilon$ behavior
- Secant modulus of composite pile degrades with increasing strain
 - Linear degradation model invoked
- Calculate E_{sec} as f(ε)

Load Distribution

- Non-constant mobilized bond stress for piles with short bond length (SR-1 and DRPS)
 - Approaches constant value near failure
 - 16-23 kN/m for SR-1, 25-28.5 kN/m for SR-2, 8.5-12.1 kN/m for DRPS
- Significant ultimate tip resistance for SR-1 and DRPS
 - 19-25% of total ultimate capacity (300-700 kN)

Generation of Tip Resistance

- Total pile deformation $\delta = \delta_c + \delta_b + \delta_t$ $(\delta_c + \delta_b) = \int \varepsilon dz$
- Tip resistance mobilizes nonlinearly for piles with short bond length
 - Initial yield at settlement ratio of 0.01 to 0.02
 - Limiting values at settlement ratio of 0.08 to 0.10
- Small tip resistance developed for SR-2
 - No failure condition
 - Denser soils at pile tip
- Trends similar to larger deep foundations

Generation of Bond Resistance

- Develops with compression of bond zone and tip displacement ($\delta_b + \delta_t$)
- 6 to 8 mm of deformation required to initiate failure for short bond length piles (≈0.1% L_b)
- Ultimate τ reached between 10 and 20 mm (≈ 0.2% L_b)
- No failure for SR-2 with long bond length

Summary and Conclusions

- Strain gauges can point out changes in pile geometry
- Composite, nonlinear nature of micropiles complicates stress-strain response
- Resistance distribution is nonuniform along bond length
- Significant micropile tip resistance may be mobilized for shorter bond length piles

ORETRENCH

Instrument for better understanding!!

Summary and Conclusions

- Implications for analysis and design
 - Structural assessment of micropile response should account for real σ - ϵ behavior (i.e. nonlinear material behavior)
 - For controllable design scenarios micropile tip resistance could be considered
 - Short bond lengths for micropiles should be used cautiously due to the relatively small bond movement/compression required to reach ultimate capacity

