

Long-Term Performance Assessment of Micropiles Subject to Cyclic Axial Loading

Gary M. Weinstein

ISM 2007 Toronto, Canada September 27, 2007

<u>Summary</u>

- 1. Problem Definition & Research Needs
- 2. Model: Creep & Cyclic Displacement
- 3. Model Validation
 - * Structural Laboratory (New York)
 - Calibration Chamber (Paris)
- 4. Conclusions

Industry Applications

Bridges & Highways

Railways

Land-based Arresting Gear (Courtesy of U.S. Navy)

Waterfront/Harbors

Power

Cyclic Strain

A timedependent phenomena

 q,δ,n

The effect of number of load cycles on anchor displacement for a range of load amplitudes (After Al-Mosawe, 1979) The effect of load cycles on the rate of anchor displacement (After Al-Mosawe, 1979)

Strain Rate Model for Cyclic Strain

The procedure charts including (a) stress, σ , vs. strain, ε , at constant strain rate (b) strain rate vs. strain, ε at constant stress (c) residual strain rate vs. stress, σ and (d) strain, ε , vs. cycle number, n at constant stress

Ecole Nationale des Ponts et Chaussées

CERMES

Centre d'Enseignement et de Recherche en Mécanique des Sols

CERMES Calibration Chamber

FOREVER (1992-2002)

- Physical modeling of micropiles and micropile systems
- Controlled testing conditions (stress level, density, etc.)
- Monotonic & cyclic loading

Calibration Chamber

Calibration Chamber - Schematic

- *1. Preparation of massif*
- 2. Implementation of test protocol
- 3. Initialize data acquisition system
- 4. Jacking of instrumented pile
- 5. Loading of micropile
- 6. Demounting massif

System of Pluviation

Preassembly of Chamber

Fontainebleau Soil

Gradation Properties

St Rémy-lès-Chevreuse

Sand	D ₅₀ (mm)	e _{max}	e _{min}	$\rho_{\rm s}({\rm g/cm}^3)$	$\rho_{\rm d}({\rm g/cm}^3)$	$\rho_{\rm dmax}$ (g/cm ³)
AF	0.21	0.94	0.54	2.65	1.37	1.72

Massif

Test No.	Designation	M _s (Kg)	$I(g/cm^2/s)$	I _D
1	MDRC-0			
2	MDRC-1	225.38	2.72	0.405
3	MDRC-1b	224.96	2.71	0.396
4	MDRC-1c	224.06	2.70	0.378
5	MDRC-3	221.92	2.67	0.335
6	MDRC-3a	222.96	2.69	0.356
7	MDRC-3b	224.38	2.70	0.385
8	CDRC-1	223.96	2.70	0.376
9	CDRC-2	224.56	2.70	0.388
10	CDRC-3	224.24	2.70	0.382
11	FDRC-1	223.94	2.70	0.376
12	FDRC-2	225.54	2.72	0.408
13	FDRC-2a	223.96	2.70	0.376
14	FDRC-3	224.22	2.70	0.382
15	FDRC-4	224.64	2.71	0.390
16	FDRC-4a	225.28	2.71	0.403
17	FDRC-5	225.82	2.72	0.414
18	FDRC-6	225.72	2.72	0.412
19	FDRC-8	225.83	2.72	0.414
20	FLC-1	225.52	2.72	0.408
21	FLC-2	225	2.71	0.397

Massif Calibration

Density Index vs. Deposition Intensity

Application of Vacuum/Counterpressure

Application of Stresses

Principle Schematic

Jacking & Loading

Loading of micropile

Hydraulic jack Single stroke (force transducer)

Loading jack (Displacement & force transducer at head)

Jacking of micropile

Instrumented Micropile

Instrumented micropile

Measure of friction at the sleeve

200 mm

⊢ Force transducer 4 kN

φ20 mm

Force transducer (5kN) – Measure of load at the tip

Test Schedule

Test Number	Designation	Applied Displacement Rate	Cyclic Displacement Rate	Frequency Rate	Q _{Peak}	q _{p Peak}	f _{s Peak}	δ_{max}	δ _e	δ _p	q _{p,res}	f _{s,res}
		(mm/min)	(mm/cycle)	(cycle/min)	(kN)	(MPa)	(kPa)	(mm)	(mm)	(mm)	(MPa)	(kPa)
1	MDRC-0	1	na	na	5.06	6.85	68.37	5.13	4.64	4.64	0.88	-0.44
2	MDRC-1	1	na	na	4.38	6.26	60.96	59.80	59.80	59.80	1.13	-1.86
3	MDRC-1b	1	na	na	4.34	6.58	43.06	24.92	24.92	24.92	0.90	-2.48
4	MDRC-1c	1	na	na	4.59	6.31	62.52	24.90	24.90	24.90	0.89	-1.76
5	MDRC-3	0.2	na	na	4.14	5.22	54.22	24.91	24.91	24.91	0.75	-0.48
6	MDRC-3a	0.2	na	na	5.01	5.98	73.07	19.93	19.93	19.93	0.69	-1.54
7	MDRC-3b	0.2	na	na	4.38	5.45	66.03	19.92	19.92	19.92	1.03	-0.63
8	CDRC-1	1	0.2	5	4.84	4.84	75.91	3.58	3.23	3.23	0.57	0.61
9	CDRC-2	0.25	0.05	5	4.61	4.01	86.43	2.49	2.23	2.23	0.56	1.18
10	CDRC-3	0.02	0.004	5	3.40	3.13		0.96	0.78	0.78	0.59	
11	FDRC-1	1	1	1	4.69	5.82	67.10	10.98	10.63	10.63		
12	FDRC-2	1	0.1	10	4.21	4.50	57.57	9.99	9.72	9.72	0.13	0.18
13	FDRC-2a	1	0.1	10					1.10	1.10		
14	FDRC-3	1	0.02	50	3.56	3.89	56.47	10.86	10.66	10.66		
15	FDRC-4	1	0.004	250	2.55	2.88	54.95	1.07	0.94	0.94	0.83	0.83
16	FDRC-4a	1	0.004	250					1.20	1.20		
17	FDRC-5	1	0.002	500	2.29	2.92	55.34	1.02	0.83	0.83	0.79	0.79
18	FDRC-6	1	0.001	1000	2.04	2.79	51.74	1.00	1.00	1.00	0.22	0.22
19	FDRC-8	1	0.0004	2500	1.87	2.64	47.63	0.53	0.45	0.45		
20	FLC-1	1	na	na	3.17	4.21	45.07	17.47	17.29	17.29		
21	FLC-2	1	na	na	1.82	3.05	52.22	0.77	0.67	0.67		

Testing Summary

- 1. Monotonic displacement rate control Effect of rate
- 2. Cyclic displacement rate control Effect of frequency
- 3. Cyclic load control Validation of testing methodology & model

Establishment of Critical Cyclic Load

Test Control & Data Acquisition

Mission Control

LABView Environment

MTS FlexTest System

Repeatibility & Rate Effects

Jacking

Loading

Initial Stiffness (Rate Effects)

Loading

Variable Applied Displacement Rate

Variable Cyclic Displacement Rate

Load Control

Displacement vs. Cycle Number

Displacement Rate vs. Cycle Number

Load & Rate Control

Displacement Rate vs. Displacement

Establishment of Critical Cyclic Load

Conclusions

- **Experimental Model Evaluation** illustrates that model predictions agree with the experimental results indicating that long-term behavior of strain-rate dependent and frequency dependent materials and phenomena such as soil-pile interaction can be predicted using short-term strain rate controlled cyclic compression test results.
- The cyclic strain model predicts a Cycle Limit at which the cyclic strain process ends for loads that are smaller then the Critical Cyclic load. For loads that are greater than the Critical Cyclic Load, the model predicts linear long-term strain-cycle behavior.
- Further research is now required to better understand the effect of in-situ testing conditions (i.e. soil confinement, ground water, etc.) on the long-term cyclic behavior of micropiles. Full scale loading tests would be required in order to provide a relevant database for the field evaluation of the strain rate cyclic creep model and the development of reliable design methods for the assessment of the long-term performance of rate and frequency dependent phenomena.
- Impact on Engineering Practice Existing pile load testing equipment could be used to conduct fullscale field loading tests using the suggested testing protocol. If successful, testing standards could be developed which could lead to adopting the proposed cyclic strain testing procedure and strain rate controlled cyclic strain model as a base line for industry pile testing standards

Research Program Support

Schnabel Engineering Polytechnic University International Association of Foundation Drilling (ADSC)

> Applied Geotechnical Engineering (AGE) Branlow Piling Solutions CAT Construction/Traylor Group Con-Tech Systems LTD. DBM Construction Geosystems LP Hayward Baker, Inc. Ischebeck Layne GeoConstruction Moretrench American Corp. Nicholson Construction TEI Rock Drills

Thank You

